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Ligaments and tendons have a significant role in the musculoskeletal system and are frequently subjected to
injury. This study presents a model of collagen fibers, based on the study of a statistical distribution of fibers
when they are subjected to quasistatic linear stretching. With respect to other methodologies, this model is able
to describe the behavior of the bundle using less ad hoc hypotheses and is able to describe all the quasistatic
stretch-load responses of the bundle, including the yield and failure regions described in the literature. It has
two other important results: the first is that it is able to correlate the mechanical behavior of the bundle with its
internal structure, and it suggests a methodology to deduce the fibers population distribution directly from the
tensile-test data. The second is that it can follow fibers’ structure evolution during the stretching and it is
possible to study the internal adaptation of fibers in physiological and pathological conditions.
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Ligament and tendon injury can be very serious both for
nonathletes and athletes, and when it happens, it is funda-
mental that physicians do their best to ensure a correct repair
of the injury. The literature presents many clinical articles
concerning hypotheses and proposals about techniques use-
ful to repair ligaments correctly. Response to this demand
can be found through mechanical measurements and the de-
velopment of a models to cover a wider range of applica-
tions, from specific to general ones. The first to describe
tendon behavior was Abrahams in 1967 �1�, who also de-
scribed the properties of tendon samples, in nonphysiological
conditions. In 1991, Blankevoort et al. �2� published a paper
describing how ligament fibers were recruited during knee
flexion and they found that the tension on the ligament de-
pends on the recruited fibers and their length �or strain�. Be-
tween 1996 and 1997, Mommersteeg, Blankevoort, and co-
workers �3–5� proposed a model of the knee where they used
nonlinear dynamics to model ligaments and described liga-
ments as being made of different bundles, each one with its
different mechanical properties and functions. These articles
were followed by others that described models based on con-
tinuum mechanics. Pioneers in this field are Fung �6� and
Woo �7,8� who used constitutive equations to model the col-
lagen fibers and predict the stress-strain behavior. These
models work well during fiber recruitment and linear elastic
deformation phases �9,10� but nothing is said about bundle
failure. Although these models are effective at describing the
force-stretch behavior of bundles, ad hoc hypotheses need to
be made about the equations to insert into the models, and
the result could vary greatly depending on the change of
equations. These types of models can describe the viscoelas-
tic behavior of collagen bundles and can be solved numeri-
cally using finite element method, but, as reported by
Donahue et al. �11�, it is important to know the accurate
three-dimensional geometric structure of the joint, how the
joint components interact each others, and how to make
meshes to describe the joint structures �bones, ligaments,
tendons�. Another approach, that can be used to model a

collagen bundle, is to look at collagen fibers as a statistic
population and correlate the single fiber dynamics through
the population �12–14�. This is the core of the model pre-
sented here. It is based on the assumption that Nature creates
ligaments and tendons with a specific structure according to
the specific function. For this reason this model wants to
avoid, as much as possible, a priori hypotheses on the inter-
nal structure, because it wants to suggest methods to create
specific models for specific bundles. Because this is a very
challenging goal, the most simplified case is presented here,
but other features are going to be added, such as continuum
mechanics formalism, geometrical structure, viscoelastic be-
havior and temperature dependence �15�. This is the first step
of a project for the development of a complete model of
ligaments and tendons, and its final goal is the description of
the thermodynamics of collagen bundles.

Collagen fibers have a very complex anatomical structure,
both concerning their molecular composition and their struc-
tural organization. As reported in the literature �16�, the
bundle is described by a hierarchical structure which was
schematically described by Kastelic et al. �17�: collagen
fibers are arranged together in microfibrils and these are
grouped in a super structure called subfibrils, and so on to
fibrils, fascicles, and, at the end, tendons or ligaments
�bundles�, as shown in Fig. 1. The model here described
analyzes what happens to a collagen bundle when it is qua-
sistatically stretched and, for this reason, the spatial distribu-
tion of fibers can be ignored. Each collagen fiber is consid-
ered as a one-dimensional string characterized by a rest
length �xr�, and a maximal length �xb�, after which it fails
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FIG. 1. Representation of the hierarchical structure of tendons

and ligaments.
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and is supposed to have a force response to stretching f�x�,
so that f�x��0 if x� �xr ,xb� and f�x�=0 otherwise.

First step—recruitment. A collagen bundle is made by a
population of collagen fibrous structures. As described by
Kastelic and co-workers in 1980 �18,19�, as the bundle
stretch increases, the fibers are recruited and the bundle stiff-
ness begins to increase �toe phase�. After all fibers have been
recruited, they enter into the elastic phase. The fiber recruit-
ment mechanism was modeled by Woo �7,20� and Fung �6�
and considered the stress-strain nonlinear behavior of the
bundle. A simplified version of the Woo and Fung approach
is used as the first step of this model and considers a popu-
lation of linear elastic fibers one-dimensionally stretched.
Because of the presence of the rest length, the model takes
into account only the stretch length �L�0�. In the phase of
recruitment, the fiber population can be characterized by the
numbers of fibers �N0� distributed according to a certain
probability density of the rest lengths, with a mean and stan-
dard deviation of the population: r�x ; x̄r ,�r�. In this case, the
fibers recruited between x and x+dx have a length L−x, so
the equation of force is

F�L� = N0�
−�

L

r�x; x̄r,�r�f�L − x�dx . �1�

The “−�” at the lower bound of the integral takes into ac-
count the pretension, i.e., the bundle could have a physi-
ological initial tension, so it can have a nonzero force when
L=0.

Second step—failure: The next step is to model what hap-
pens when the stretch increases too much and fibers begin to
fail. Collagen fibers have their own failure length and, as
above, it is possible to consider the distribution of the failure
lengths: b�x ; x̄b ,�b�. Because the force depends on the fibers’
integrity, Eq. �1� is changed to take into account the prob-
ability that fibers are intact during stretching:

F�L� = N0�
−�

L

r�x; x̄r,�r�f�L − x��1 − B�L − x��dx , �2�

where B�L−x�=�−�
L−xb�� ; x̄b ,�b�d� is the probability of fail-

ure after a fiber stretch of L−x.
It is now necessary to study the properties of Eq. �2� to

see if it is able to describe bundle behavior. Equation �2�
gives the tensile relation between stretch and bundle load and
correlates them with the internal organization of fibers. In
fact, it is a function not only of the stretch length, but also of
the statistical parameters of the population: F�L�
=F�L ;N0 , x̄r ,�r ; x̄b ,�b�. Looking at Eq. �2� it can be seen
that while the fiber’s integrity probability acts only in the
yield and failure regions, the recruitment function works on
all the aspects and it is a very important part in the bundle
behavior. It is also clear which is the main role of each pa-
rameter in the curve: x̄r acts on the pretension, �r determines
the toe region length and the failure slope, x̄b affects the
length of the linear region and �r determines the yield region
length and the failure slope. Other crucial “parameters” are
the forms of the probability functions and the fiber’s force
function which are discussed later. The dependences of the
model can be used to fit experimental data and the fitting

parameters can be useful to evaluate fiber properties. It is
also possible to make a comparison of different bundles
types. Concerning the probability properties, it is evident that
during fiber stretching there is an increase in the number of
recruited fibers, with a consequent increase in force �toe re-
gion�. When all the fibers are recruited ��−�

L r�x�dx�1� and
most of them are intact �1−B�L−x��1�, the force becomes
linear with the stretch �linear region� and the slope is deter-
mined by function f�L−x�. Because of the decrease in intact
probability with stretching, when the force becomes big
enough, the number of intact fibers begins to decrease and
the bundle force decreases in slope and stiffness �yield re-
gion� until the force reaches a maximum. After the maximal
load, the fiber integrity breaks down, because of the creation
of stress concentration regions, and the force rapidly de-
creases to zero �failure region� and in this case this model
fails its description with respect to the real bundle, because it
does not contain the stress concentration effects. Changes in
the fiber population in the load regions, during the tensile
test, can be analyzed by evaluating the fiber density distribu-
tion:

n�x� = N0r�x��1 − B�L − x�� �3�

with x� �0,L�. The population analysis is important to cor-
relate bundle behavior to changes inside its structure. This
could be used to study a partially injured population in the
bundle and compare it with the normal bundle, to study how
fiber integrity is connected to the bundle laxity, which is
crucial for joint stability �2,3,7,15,21�. The derivative of Eq.
�2�, with respect to the stretch, gives information about the
linear slope and about the position of the maximal force of
the bundle �for conciseness from now on the substitution
y=L−x is made in all the following equations�:

dF

dL
= N0�

−�

L

r�x��fL��y��1 − B�y�� − f�y�b�y�	dx , �4�

where fL��y�= �f
�L �y�. The maximal force stretch can be found

by resolving the equation dF
dL =0. The second derivative gives

more fundamental information:

d2F

dL2 = N0fL��0�r�L� − N0�
−�

L

r�x�

�
 fL��y��1 − B�y�� − 2fL��y�b�y� + f�y�
db�y�

dy
�dx

�5�

with fL��y�= �2f
�L2 �y�. If the following conditions are valid in toe

and linear regions:


 fL��0� = C � 0

fL��y� � 1 ∀ y � �0,L� � , �6�

the integral in Eq. �5� is negligible and the equation can be
approximated as
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d2F

dL2 � �N0C�r�L� �7�

and it is possible to have a direct evaluation of the recruit-
ment distribution of the fiber population inside the bundle.
This has a tremendous implication because it frees the model
from a priori hypotheses about the fiber length distribution
and also suggests an experimental method to extrapolate the
real form of r�x ; x̄r ,�r� specific for each type of bundle. It is
therefore possible to make an accurate tensile test in the toe
and linear regions, and then, evaluate numerically the second
derivative, to determine the statistical properties and the ty-
pology of the recruitment distribution, and create a bundle
database useful to make ad hoc models.

The correctness of the model was first tested fitting data
generated by a Monte Carlo simulation. Eppel et al. �22�
measured the force-displacement relation of a single collagen
fibril and they found a quasilinear behavior. With this result,
the model was tested using a linear form of the single fiber
force f�y�=ky where k is the fiber elastic constant, and Eq.
�2� can be written as

F�L� = N0k�
−�

L

r�x�y�1 − B�y��dx . �8�

In this case the conditions �6� are valid in fact fL��0�=k and
fL��y�0∀y and it is possible to have an evaluation of the
fibers population using the approximation in Eq. �7�:

d2F

dL2 � �N0k�r�L� . �9�

Figure 2 shows the results of the simulation of 106 linear
fibers with a force response of f�x�=k�x−xr�∀x� �xr ,xb�

and f�x�=0 otherwise. All the simulation’s parameters were
randomly generated and both the rest length of each fiber �xr�
and the break length �xb� were Gaussian distributed, includ-
ing the extra noise added to the total fiber’s force. The data
set was fitted according to the model in Eq. �8� and the
derivatives are fitted applying a denoise filter. As can be seen
in Fig. 2�a� the model is able to describe the experimental
data with an optimal approximation �including the failure
region because the data set generator does not take into ac-
count the stress concentration effects� and it is able to infer
the recruitment rest length distribution according to Eq. �7�
�Fig. 2�d��. The recruitment population distribution was also
tested with data from �15� and results are shown in Fig. 3.
The differences between Figs. 3�b� and 3�d� show that the
fiber length population could be very variable according to
the specific type and function of the bundle. In this case, the
number of points is too poor to give an accurate description
of the population using the approximated equation �7�, but it
is evident that the Gracilis tendon fibers have a Gaussian-
type distribution �Fig. 3�b��, whereas in the Semitendinous
tendon the distribution is not Gaussian, but seems to be uni-
form after a certain length �Fig. 3�d��. This difference is too
small to be detected in the tensile data fitting �Figs. 3�a� and
3�c��. The extraction of the recruitment distribution is impor-
tant information that can be obtained directly from tensile
tests and can be used to characterize the fibers microscopi-
cally and make a theoretical model of the bundle properties.
During the data fitting tests, it was observed that the model
parameters are sensitive to changes of the order of 0.01 mm
and this must be taken into account as a resolution sugges-
tion for the experimental evaluation of the recruitment popu-
lation derived from Eqs. �4� and �5�.

The model analyzes the easiest aspect of the collagen
bundle behavior �i.e., quasistatic, linear stretching�, but it
shows its ability to describe and explain the results of the
literature correctly and gives interesting descriptions about
the internal organization of the bundle. The originality and

FIG. 2. �Color online� Tensile test data fitted using Eq. �8�. Plots
�A� and �B� show experimental data and the model fitting and their
first derivative. Plot �C� shows the second derivative of data and
highlights the results of Eq. �7� and plot �D� shows the comparison
of the model distribution �red line� with the data generator �green
histogram� and the second numerical derivative of the data set �blue
histogram�.

FIG. 3. �Color online� Tensile data fitting of Gracilis �A� and
Semitendinous �C� tendons using Eq. �8�. Panels �B� and �D� show
the respective histograms of the recruitment fiber length distribution
and the gauss distribution used to fit tensile data with Eq. �9�.
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the advantage of the approach used here is that it can de-
scribe all the behaviors presented in the literature, including
the yield and part of the failure phases, thus avoiding many
ad hoc hypotheses, and it can neglect the accuracy of the
geometry description. Despite other probabilistic models this
does not need the a priori knowledge of the probability func-
tions and it suggests a methodology to extract these informa-
tion from the experimental data, opening the opportunity to
make specific models according to the bundle characteristics,
as expected. It could have several applications in biomechan-
ics to correlate ligament and tendon functions to anatomical
parameters and to understand better how macroscopic behav-
ior is correlated to the microscopic structure of the bundle,
and evaluations can be made about the physiological and

pathological structure and behavior of the bundle. The latter
could be very beneficial in ligament reconstruction and pros-
thesis implantation with a complete theory. Moreover, a
comparison of bundle properties could be used to evaluate
which bundle is suitable to reconstruct an injured ligament
when many different tendons could be used �23�. Another
important clinical application in ligament reconstruction is
the evaluation of the ligament pretension and graft tension,
which are crucial for the outcome of the intervention �24,25�.
This model is the first step in the development of a complete
description of ligaments and tendons. The next step in the
model’s development road map is the integration of the re-
sults obtained here with the continuum mechanics and the
theory of elasticity.
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